When is an NTU not an NTU? New Reporting Procedures by USGS and ASTM Address Turbidity Data Comparability and Storage Issues

Chauncey Anderson
and
G. Douglas Glysson,
JS Geological Survey

Acknowledgements

Funding from: USGS Office of Water Quality Major assistance from: Mike Sadar (Hach Corp.) John McDonald (YSI Environmental) Kemon Popacosta (GFS Chemicals, Inc.) USGS- Andy Ziegler, Richard Wagner, Jim Eychaner, Mark Uhrich, Office of Surface Water

Take Home Messages

There is no such thing as "The Correct Turbidity"!

Consistency, Consistency!

USGS & ASTM will report and store data with new reporting units based on instrument type (Oct. 1, 2004)

Outline

- 1. Problem / Definition
- 2. Measurement & Technology
- 3. Comparisons among instruments

- 4. USGS & ASTM response
 - Reporting Units
 - Data Storage

Problem: Large differences among instruments and users

Definition of Turbidity

"...an expression of the optical properties of a liquid that causes light rays to be scattered and absorbed rather than transmitted in straight lines through a sample." (ASTM International, 2003a)

- Suspended material
 - clay, silt, finely divided organic matter, plankton, other microscopic organisms
- Dissolved material
 - organic acids and dyes

Measurement

Technology

Single detector, white light (standard nephelometry)

- Multiple detectors (ratiometry)
- Near-IR nephelometry
 - Non-ratio (single detector)
 - Ratio (multiple detectors)
- Surface Scatter
- Backscatter
- Attenuation / Transmission
- Static (benchtop) vs Dynamic (submersible)

Effect of Color

Data from Pavelich, NWQL

Effect of Light Source & Detectors

New Reporting Units

	Light Wavelength				
Detector Geometry	White or broad band (400-680 nm)	Near-IR or Monochrome (780-900 nm)			
Single-Beam Light Source					
Single Detector Nephelometry (90°)	NTU— Nephelometric Turbidity Unit	FNU— Formazin Nephelometric Unit			
Multiple Detector Nephelometry (90° and other angles)	NTRU— Nephelometric Turbidity Ratio Unit	FNRU— Formazin Nephelometric Ratio Unit			
Single Detector Backscatter (30°)	BU— Backscatter Unit	FBU— Formazin Backscatter Unit			
Single Detector Attenuation (180°)	AU— Attenuation Unit	FAU— Formazin Attenuation Unit)			
Multiple-Beam Light Source					
Multiple Detector Nephelometry (90° and other angles)	NTMU— Nephelometric Turbidity Multibeam Unit	FNMU— Formazin Nephelometric Multibeam Unit			

Where to from here?

- USGS National Field Manual Ch. 6.7 (http://water.usgs.gov/owq/FieldManual)
- USGS historical data won't be migrated to new pcodes unless specific information on instrument is available.
 - EAC)
- ASTM Round-Robin

There is no such thing as "The Correct Turbidity"!

Consistency, Consistency, Consistency!

USGS & ASTM will report and store data with new reporting units based on instrument type (Oct. 1, 2004)

Turbidity-- Considerations

- Currently no federal regulations apply to natural waters
- Turbidity isn't an inherent physical property & is affected by many factors
- Technological advances that account for these factors also reduce comparability
- Techniques matter (static/dynamic, calibrants used)

Effect of Dilutions

Near IR (YSI 6026)

Ratio Meter (Hach 2100AN)

Ratio Meter Diluted (Hach 2100 AN)

Effect of Particle Size and Density

Upper Squaw Creek, 3-Sisters Wilderness, Oregon, August 2003

Factors affecting turbidity

Properties of water matrix	Effect on Measurement	Direction of effect	Instrument designs to compensate
<u>Color</u>	Absorption of light beam	Negative (-)	Near-IRMultiple detectors
Particle Size: •Large •Small	λ – Dependent	+ (Near IR) - (White)	•White Light •Near IR
Particle Density	Increases forward & back scattering	Negative (-)	•MultipleDetectors•Backscatter

Factors affecting measurements

- Particles
- Color
- Light source
- Number and configuration of detectors
- Particle settling
- Mechanical & Sample problems

Example - YSI Probes

Comparison of new YSI turbidity probe with Hach 2100AN Sites number 1-71

Near-IR, DynamicNear IR, Static

- * White Light, Ratio (static)
- White Light (Static)

Calibrants

- Reference Solution
 - Scratch Formazin (4000 TU)
- Calibration Solutions
 - Diluted scratch formazin or commercial standards
 (StablCal™, AMCO AEPA-1™ polymers)
- Verification Standards
 - Solids, gels

FAQ

- EPA Role/Response?
- What about FTU?
- Polymer vs Formazin?
- Why do some units contain "formazin" in name and some don't?
- Can USGS just do this w/o EPA?
- What's the best instrument to use?

